Binomial Theorem - 5

Introduction
(3) Find the digit at unit place in the number .

16 1986 + 111986 - 61986. ?

And Let E = 16 1986 + 111986 - 61986

So, E = (10 + 6)n + (1 + 10)n - 6 n

where N = 1986

= 10N + N C1 10N-1 6 + ..........+ NCN-1 10. 6n-1 + 6N

+ 1 + N C1 10. + N C2 102 + .........+ N CN10 N - 6N

= 1 + All inteqers being multiple of 10

So, The digit at unit place is 1.

(4) Find the value of x for which the sixth term of is equal to 21 and binomial coefficient of second, third and fourth terms are first, third and fifth terms of an aritnmetic progression .

Ans The sixth term of the given binomial exponsion is

mC5 ..................(1)

The other given lcondition is, mC1 + mC3 = 2 mC2

=> m2 - 9m + +14 = 0 => (m - 7) (m - 2) = 0

or m = 7 Since m = 2 is not possible .

Put m = 7 in equation (1) to get x = 0, 2

Dumb Question Why m cannot be 2 ?

If m = 2 then there cannot be 6th term in the expansion and hence it is ruled out .

If n is any positive integer show that . 23n+3 - 7n - 8 is divisible by 49 ?

The given expression

= 23n+3 - 7n - 8

= 23(n+1) - 7n - 8

= 8 n+1 - 7n - 8

=(1 + 2)n+1 - 7n - 8

= 8 (1 + 7) n- 7n - 8

= 8 (1 + nC1 7 + n C2. 72........nCn 7n ) - 7n - 8

= 8 + 56n + 8 (nC2 72 ........+ n Cn 7 n ) - 7n- 8

= 49 n 8 (n C2 72 +..............+ n Cn 7n )

= 49 (n + 8 ( n C2 + .......+ n Cn 7 n-2 ) )

So, 23n+3 - 7n - 8 is divisible by 49 .

(6) Find the coefficient of x 50 in the polynoamial

(1 + x) + 2(1 + x)2 + 3(1 + x)3+.........+1000 (1 + x) 1000 ?

Ans Let P(x) = (1 + x) + 2(1 + x)2 + 3(1 + x)3+.........+1000 (1 + x) 1000

Now (1 + x) p(x) - P(x)

= (1 + x)2 + 2(1 + x)3 + 3(1 + x)4 +.........+999 (1 + x) 1000+ 1000(1 + x) 1000

- (1 + x) - 2 (1 + x)2 - 3 (1 + x)3 ....................- 1000 (1 + x)1000

= 1000 (1 + x)1001 - (1 + x) - (1 + x)2 - (1 + x)3-.................-(1 + x)1000

1000 (1 + x) 1001 - [ (1 + x)- (1 + x)2 +.........+ (1 + x)1000]

= 1000 (1 + x)1001-

= 1000 (1 + x) 1001 -

= P(x) =

So, coefficient of x50 in P(x)

= 1000 X 1000 C51 = 1000C52

=

=

(7) If (1 + x )n = ao + a1x + a2x2+ ..........+an xn then find

value of ?

Ans Clearly ar = n Cr

So,

=> 1 +

So,

Sum the following series

Co + 5c1 + ac2 + ac2+.........................+(4n + 1)cn

Ans Let S = Co + 5c1 + ac2 + ac2+.........................+(4n + 1)cn............(1)

Sine Cr = Cn -r

So, S Cn + 5Cn-1 + a Cn +.............+ (4n = 1)Co

or S = (4n + 1) Co + (4n - 3) C1+..................+5Cn-1+cn......(2) Now Adding (i) + (2) we get

25 = (4n + 2) Co + C1 +............Cn )

=> S = (2n + 1) 2n

So, Co + 5C1 + 9C2 + ........+ (4n + 1) Cn = (2n + 1) 2n

Related Guides