Logo
📚
20 Sep 2008 | 4 min. (646 words)

  study material-mathematics-coordinate geometry    

Conic Sections for IIT JEE

        </div>
        <span class="postbody">
        <div class="justify" style="padding: 12px;">
        <table cellspacing="0" cellpadding="0" border="0" bgcolor="#ffffc0">
            <tbody>
                <tr>
                    <td><img width="125" height="180" src="https://math2.org/math/graphs/conics/cone-cir.jpg" alt="circle conic" /></td>
                    <td><img width="125" height="180" src="https://math2.org/math/graphs/conics/cone-ell.jpg" alt="ellipse conic" /></td>
                    <td><img width="125" height="180" src="https://math2.org/math/graphs/conics/cone-par.jpg" alt="parabola conic" /></td>
                    <td><img width="125" height="180" src="https://math2.org/math/graphs/conics/cone-hyp.jpg" alt="hyperbola conic" /></td>
                </tr>
                <tr>
                    <td>Circle<br />
                    <img width="125" height="110" src="https://math2.org/math/graphs/conics/g-circle.gif" alt="graph circle (horiz.)" /></td>
                    <td>Ellipse (h)<br />
                    <img width="125" height="110" src="https://math2.org/math/graphs/conics/g-ellx.gif" alt="graph ellipse (horiz.)" /></td>
                    <td>Parabola (h)<br />
                    <img width="125" height="110" src="https://math2.org/math/graphs/conics/g-parx.gif" alt="graph parabola (horiz.)" /></td>
                    <td>Hyperbola (h)<br />
                    <img width="125" height="110" src="https://math2.org/math/graphs/conics/g-hypx.gif" alt="graph hyperbola (horiz.)" /></td>
                </tr>
                <tr>
                    <td width="125"><strong><em>Definition:</em></strong><br />
                    A conic section is the intersection of a plane and a cone.</td>
                    <td>Ellipse (v)<br />
                    <img width="125" height="110" src="https://math2.org/math/graphs/conics/g-elly.gif" alt="graph ellipse (vert.)" /></td>
                    <td>Parabola (v)<br />
                    <img width="125" height="110" src="https://math2.org/math/graphs/conics/g-pary.gif" alt="graph parabola (vert.)" /></td>
                    <td>Hyperbola (v)<br />
                    <img width="125" height="110" src="https://math2.org/math/graphs/conics/g-hypy.gif" alt="graph hyperbola (vert.)" /></td>
                </tr>
            </tbody>
        </table>
        <br />
        By changing the angle and location of intersection, we can produce a circle, ellipse, parabola or hyperbola; or in the special case when the plane touches the vertex: a point, line or 2 intersecting lines.
        <div>
        <table cellspacing="0" cellpadding="0" border="0" bgcolor="#ffffc0">
            <tbody>
                <tr>
                    <td><img width="125" height="180" src="https://math2.org/math/graphs/conics/cone-pnt.jpg" alt="point conic" /></td>
                    <td><img width="125" height="180" src="https://math2.org/math/graphs/conics/cone-lin.jpg" alt="line conic" /></td>
                    <td><img width="125" height="180" src="https://math2.org/math/graphs/conics/cone-li2.jpg" alt="double line conic" /></td>
                </tr>
                <tr>
                    <td>Point<br />
                    <img width="125" height="110" src="https://math2.org/math/graphs/g-point.gif" alt="graph point conic" /></td>
                    <td>Line<br />
                    <img width="125" height="110" src="https://math2.org/math/graphs/g-mxpb.gif" alt="graph line conic" /></td>
                    <td width="125" valign="top">Double Line<br />
                    </td>
                </tr>
            </tbody>
        </table>
        <div>
        <table width="100%" bgcolor="#ffffc0">
            <tbody>
                <tr>
                    <td><font color="#800000"><strong>The General Equation for a Conic Section:</strong></font><br />
                    Ax<sup>2</sup> + Bxy + Cy<sup>2</sup> + Dx + Ey + F = 0</td>
                </tr>
            </tbody>
        </table>
        <div><font color="#800000"><strong>The type of section can be found from the sign of: B<sup>2</sup> - 4AC</strong></font>
        <table cellspacing="0" border="1">
            <tbody>
                <tr>
                    <td>If B<sup>2</sup> - 4AC is...</td>
                    <td>then the curve is a...<br />
                    </td>
                </tr>
                <tr>
                    <td>&nbsp;&lt; 0</td>
                    <td>ellipse, circle, point or no curve.<br />
                    </td>
                </tr>
                <tr>
                    <td>&nbsp;= 0</td>
                    <td>parabola, 2 parallel lines, 1 line or no curve.<br />
                    </td>
                </tr>
                <tr>
                    <td>&nbsp;&gt; 0</td>
                    <td>hyperbola or 2 intersecting lines.<br />
                    </td>
                </tr>
            </tbody>
        </table>
        <div><strong>The Conic Sections.</strong> For any of the below with a center (j, k) instead of (0, 0), replace each <u>x</u> term with (x-j) and each <u>y</u> term with (y-k).
        <div>
        <table border="1">
            <tbody>
                <tr>
                    <td>&nbsp;</td>
                    <td><font color="#800000"><strong>Circle</strong></font></td>
                    <td><font color="#800000"><strong>Ellipse</strong></font></td>
                    <td><font color="#800000"><strong>Parabola</strong></font></td>
                    <td><font color="#800000"><strong>Hyperbola</strong></font></td>
                </tr>
                <tr>
                    <td>Equation (horiz. vertex):</td>
                    <td>x<sup>2</sup> + y<sup>2</sup> = r<sup>2</sup></td>
                    <td>x<sup>2</sup> / a<sup>2</sup> + y<sup>2</sup> / b<sup>2</sup> = 1</td>
                    <td>4px = y<sup>2</sup></td>
                    <td>x<sup>2</sup> / a<sup>2</sup> - y<sup>2</sup> / b<sup>2</sup> = 1</td>
                </tr>
                <tr>
                    <td>Equations of Asymptotes:</td>
                    <td>&nbsp;</td>
                    <td>&nbsp;</td>
                    <td>&nbsp;</td>
                    <td>y = &plusmn; (b/a)x</td>
                </tr>
                <tr>
                    <td>Equation (vert. vertex):</td>
                    <td>x<sup>2</sup> + y<sup>2</sup> = r<sup>2</sup></td>
                    <td>y<sup>2</sup> / a<sup>2</sup> + x<sup>2</sup> / b<sup>2</sup> = 1</td>
                    <td>4py = x<sup>2</sup></td>
                    <td>y<sup>2</sup> / a<sup>2</sup> - x<sup>2</sup> / b<sup>2</sup> = 1</td>
                </tr>
                <tr>
                    <td>Equations of Asymptotes:</td>
                    <td>&nbsp;</td>
                    <td>&nbsp;</td>
                    <td>&nbsp;</td>
                    <td>x = &plusmn; (b/a)y</td>
                </tr>
                <tr>
                    <td>Variables:</td>
                    <td>r = circle radius</td>
                    <td>a = major radius (= 1/2 length major axis)<br />
                    b = minor radius (= 1/2 length minor axis)<br />
                    c = distance center to focus</td>
                    <td>p = distance from vertex to focus (or directrix)</td>
                    <td>a = 1/2 length major axis<br />
                    b = 1/2 length minor axis<br />
                    c = distance center to focus</td>
                </tr>
                <tr>
                    <td>Eccentricity:</td>
                    <td>0</td>
                    <td>&nbsp;</td>
                    <td>c/a</td>
                    <td>c/a</td>
                </tr>
                <tr>
                    <td>Relation to Focus:</td>
                    <td>p = 0</td>
                    <td>a<sup>2</sup> - b<sup>2</sup> = c<sup>2</sup></td>
                    <td>p = p</td>
                    <td>a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></td>
                </tr>
                <tr>
                    <td>Definition: is the locus of all points which meet the condition...</td>
                    <td>distance to the origin is constant</td>
                    <td>sum of distances to each focus is constant</td>
                    <td>distance to focus = distance to directrix</td>
                    <td>difference between distances to each foci is constant</td>
                </tr>
            </tbody>
        </table>
        </div>
        </div>
        <!-- Attachments --> 						</div>
        </div>
        </div>
        </div>
        </span></td>
        <td valign="top" align="left" rowspan="2" class="row_post11"> 											<!--
                    <script type="text/javascript">writeStars(1896, "3173105622");</script>
                    --> 														<span class="gensmall"> 																																												<!--
                    												
                    
                    
                        <tbody>
                            <tr>
                                
                            </tr>
                            <tr>
                                <td class="gensmall"> 															<img 
                            </tr>
                        </tbody>
                    </table>
                    </span></td>
                </tr>
            </tbody>
        </table>
        </td>
    </tr>
</tbody>
Twitter Facebook Google+

Related Guides

    Top 50 private Engineering Colleges

    …

    Step wise approach to crack IIT - JEE --- An Ex-iitians experience

    …

    About
    Menu
  1. Home
  2. AIEEE
  3. BITSAT
  4. Coaching Institutes In Major Cities
  5. Colleges & Exams Notification
  6. IITian Speaks
  7. IITJEE
  8. Previous Year Questions
  9. Study Material
  10. Tips & Tricks
  11. VITEEE, CUSAT, MANIPAL UGET & Other Exams
  12. You Request
  13. About
  14. Menu