functions-and-graphs-2

Absolute Value of Modulus Function:

y = |x| =
Domain R Range (0, )




Properties of modulus function:

(i) |x| a   - a x a    (a 0)
(ii) |x| a   x - a   or   x a    (a )
(iii) |x + y| |x| + |y|
(iv) |x + y|


Illustration: Find domain of y =

Ans: y is defind if (|x| - x) > 0
  |x| > x which hold for -ve x only
Hence domain (- , 0)


(7) Signum Function:

y = Sgn(x) =
               
Domain   x R
Range {- 1, 0, 1}




(8) Greatest integer function:

[x] indicates integral part of x which is nearest & smaller integer to x. It is also c/d floor of x or stepwise function.
[2.3] = 2      [5] = 5,      [- 0.6] = - 1
In general

n n < n + 1     (n Integer)
[n] = n

              x     [x]
      0 x < 1
      1 x < 2
      2 x < 3
    - 1 x < 0
    - 2 x < - 1
      0
      1
      2
    - 1
    - 2



Properties of greatest integer function:

(i) [x] = x holds if x I    I Integer.

(ii) [x + I] = [x] + I if I is integer.

(iii) [x + y] [x] + [y]

(iv) If [(x)] I, then (x) I.

(v) If [(x)] I, then (x) < I + 1

(vi) If [x] > n    x n + 1, n I.

(vii) [- x] = - [x] if x I
      & [- x] = - [x] - 1 if x I.

(viii) [x + y] = [x] + [x + y - [x]] for all x, y R.

(ix) [x] +
   = [n x], n N     N natural no.


Illustration: y = 2[x] + 3   &   y = 3[x - 2] + 5 then find value of [x + y].

Ans:   2[x] + 3 = 3[x - 2] + 5
      2[x] + 3 = 3[x] - 6 + 5    [x] = 4
      4 < 5
         x = 4 + f    (f fraction)
       y = 2[x] + 3 = 11
      [x + y] = [4 + f + 11] = [15 + f] = 15


(9) Fractional part function:

       y = {x}
Let   x = I + f,    I = [x]    &    f = {x}
y = {x} = x - [x]

             x      {x}
      0 x < 1
      1 x < 2
      2 x < 3
    - 1 x < 0
    - 2 x < - 1
        x
      x - 1
      x - 2
      x + 1
      x + 2

Domain   x R
Range    (0, 1)



Properties of fraction part of x

(i) {x} = x   if   0 < 1

(ii) {x} = 0   if   x I

(iii) {- x} = 1 - {x}   if   x I


Illustration: Prove that   [x] + [y] [x + y]   where   x = [x] + {x}

Ans:   x + y = [x] + {x} + [y] + {y}
         [x + y] = [[x] + [y] + {x} + {y}]
                   = [x] + [y] + [{x} + {y}]   [By [x + I] = [x] + I]
         [x + y] [x] + [y]


(10) Exponential Function:

f(x) = ax,   a > 0,   a 1
Domain R
Range (0, )

Case I:    a > 1
              f(x) = ax increase with increase in x.
              i.e. f(x) is increasing function ob R



Case II:    0 < a < 1
               f(x) = ax decrease with increase in x




Dumb Question: How range comes out (0, ) ?

Ans:  y = ax
Let    a > 1
As     x
Since a > 1
So,    ax
and when   x -
                ax 0
range (0, )


Logorithmic function:

f(x) = logax      (x, a > 0)   &   a 1
Domain (0, )
Range R


Properties:

(i) Logaa = 1                  (ii) logbm a = logba    {a, b > 0, b 1    m R}

(iii) logab =    {a, b > 0, a, b 1    &    m > 1}

(iv)    {a, m > 0    & a 1}

(v)    {a, b, c > 0    &    c 1}

(vi) logma < b  
(vii) logma < b  


Dumb Question: Why b 1 in logba ?

Ans:   logba = c    bc = a
if    b = 1
     1c a
Now whatever value of c,    1c a,    so,    b 1


Illustration: Find domain of f(x) = log10(1 + x3)

Ans:   f(x) = log10(1 + x3)    exists if
    1 + x3 > 0
(1 + x)(1 - x + x2) > 0
But    1 - x2 + x2 > 0    as    D < 0    &    a > 0
So,    1 + x > 0
        x > - 1
        x (- 1, )


Trignometric Function:

(1) Sine Function:

   f(x) = sinx
Domain R
Range [-1, 1]


(2) Cosione Function:

  f(x) = cos x
Domain R
Range [-1, 1]









Related Guides