Functions:
Illustration: Find no. of surjection from A
B
A = {1, 2, 3, 4} & B = {a, b}
Ans:
1
2 images
2
2 images
3
2 images
4
2 images
Total no. of function = 2 x 2 x 2 x 2 = 2
4
But there are two function f(x) = a for all x
A & g(x) = b for all x
A are not surjective.
Total no. of surjection from A to B = 2
4 - 2 = 14
Inverse function: Let f : A
B be one-one & onto function then there exists a unique function.
g : B
A such that f(x) = y
g(y) = x,
v x
A & y
B
Then g is c/d inverse of F.
So, g = f
-1 : B
A = {(f(x), x) | (x, f(x)
f}
Domain of f = {1, 2, 3, 4} = range of f
-1
Range of f = {2, 4, 6, 8} = domain of f
-1.
Illustration: If f(x) = 3x - 5, then find f
-1(x).
Ans: f(x) = 3x - 5 which linear function so bijective.
Let f(x) = y
Y = 3x - 5
x =
f
-1(y) =
f
-1(x) =
Note: (1) Graph of y = f(x) and y = f
-1(x) are mirror images to each other.
(2) If f : A
B & g : B
C are two bijections, then gof : A
C is bijection & (gof)
-1 = (f
-1og
-1).
(3) If fog = gof then either f
-1 = g or g
-1 = f and (fog)(x) = (gof)(x) = (x)
Easy Type
Q.1. Find domain of f(x) = log
10log
10(1 + x
3)
Ans: Let log
10(1 + x
3) = y
f(x) = log
10y
y > 0
log
10(1 + x
3) > 0
(1 + x
3) > 10
0
x
3 > 0
x
(0,
)
Q.2. Find domain of y =
Ans: Let log
2x = z
z is defined if x > 0 .......................................... (i)
and - 1
z
1 or - 1
log
2x
1
1/2
x
2 ................................................. (ii)
But y is defined if
sin
-1z
0 or sin
-1log
2(x)
0 ..................... (iii)
log
2x
0
x
2
0 x
1 .................. (iv)
From (i), (ii) & (iv)
1
x
2
domain x
[1, 2]
Q.3. Find values of 'a' for which f(x) = tan
-1(x
2 - 18x + 9) > 0 for x
R.
Ans: f(x) > 0
v x
R
x
2 - 18x + a > 0
v x
R
ax
2 + bx + c > 0 if D < 0 & a > 0
D = (18)
2 - 49 < 0
a > 81
a
(81,
)
Q.4. f(x) =
find domain of f9x).
Ans: f(x) =
exists if
[x] - x > 0
[x] > x
But by definition of greatest integer function
[x]
x as x = [x] + {x}
So, it is not possible that [x] > x
domain f(x) =
Q.5. Solve 4{x} = x + [x]
Ans: x = [x] + {x}
4{x} = [x] + {x} + [x]
{x} =
But 0
{x} < 1
0
< 1
0
[x] < 3/2
[x] = 0 or 1
If [x] = 1, then {x} = 2/3
Thus, x = [x] + {x} = 1 + 2/3 = 5/3
If [x] = 0, {x} = 0
x = 0
Solutions x
{0, 5/3}
Q.6. Find range for y =
.
Ans: y =
=
Domain
R
y =
{x} =
Since 0
{x} < 1
0
< 1
0
y < 1/2
range = (0, 1/2)
Q.7. Let f(x) be periodic & k bca +ve real no. such that f(x + k) + f(x) = 0
v x
R. Prove that f(x) f(x) is periodic with period 2k.
Ans: f(x + k) + f(x) = 0
v x
R
f(x + k) = - f(x)
v x
R ................................................... (i)
put x = x + k
f(x + 2k) = -f(x + k)
v x
R
from (i)
f(x + 2k) = f(x),
v x
R
f(x) is peruiodic with period 2k.
Q.8. Find period of f(x) = tan3x + sin
Ans: Period for tan 3x is
Period for sin
is |2
x
= 6
LCM of
sin
-1 <
< 1
1 -
< 1,
v x
R
-
-
< 0
a + 1 > 0
a
(-1,
)
Q.10. If f : R
R f(x) = x
2 + 1, then find value of f
-1(17).
Ans: f(x) = x
2 + 1
f
-1(17)
f(x) = 17
x
2 + 1 = 17
x = ±4
x = {4, -4}
Medium Type
Q.1. Find domain of function. f(x) =
Ans: log(x
2 - x + 1) is defined when
x
2 - x + 1 > 0 & x
2 - x + 1
1
x
R and x
0, 1
x
R - {0, 1} ..................................... (i)
[
Dumb Question: How x
2 - x + 1 > 0
v x
R & why x
2 - x + 1
1 ?
Ans: ax
2 + bx + c > 0
v x
R if a > 0 & D < 0
For x
2 - x + 1, a = 1 > 0 & D = 1 - 4 = - 3 < 0
So, x
2 - x + 1 > 0 for all x
R
& If x
2 - x + 1 = 1 then logx
2 - x + 1 = 0
&
=
which is not desired.]
Again log(sin
-1) exists when x
2 + x + 1 > 0 & x
2 + x + 1
1
i.e. 0 < x
2 + x + 1
1
x
2 + x
0
x
[-1, 0] .............................. (ii)
From (i) & (ii)
x
[-1, 0)
Q.2. Find domain of f(x) =
where {} is greatest integer function.
Ans: f(x) is defined when
[|x - 1|] + [|7 - x|] - 6
0
Taking (i)
[1 - x] + [7 - x]
6
1 + [-x] + 7 + [-x]
6
2[-x]
- 2 [-x]
- 1
x
(0, 1] ................................... (1)
From (ii)
[x - 1] + [7 - x]
6
[x] - 1 + 7 + [-x]
6
[x] + [-x]
0 x
Integer
x
{1, 1, 3, 4, 5, 6, 7} ................. (2)
From (iii)
x
[7, 8) ..................................... (3)
From (1), (2) & (3)
Domain f(x)
R - {(0, 1]
{1, 2, 3, 4, 5, 6, 7}
[7, 8)}
Q.3. f(x, y) is periodic function satisfying condition f(x, y) = f((2x + 2y),(2y - 2x))
v x,y
R. Now g(x) = f(2
x, 0) then prove that g(x) is periodic function, find its period.
Ans: f(x, y) = f(2x + 2y, 2y - 2x) ....................................... (i)
Put x = 2x + 2y & y = 2y - 2x
f(2x + 2y, 2y - 2x) = f(2(2x + 2y) + 2(2y - 2x), 2(2y - 2x) - 2(2x + 2y)) [By (i)]
f(x, y) = f(2x + 2y, 2y - 2x) = f(8y, - 8x)
f(x, y) = f(8y, - 8x) ..................................................... (ii)
f(8y, - 8x) = f{8(- 8x), - 8(8y)} [By (ii)]
f(x, y) = f(2x + 2y, 2y - 2x) = f(8y, - 8x) = f(- 64x, - 64y)
f(x, y) = f(- 64x, - 64y) ............................................... (iii)
f(- 64x, - 64y) = f(64 x 64 x, 64 x 64y) = f(2
12x, 2
12y) [By (iii)]
f(x, y) = f(2
12x, 2
12y)
f(2
x, 0) = f(2
12.2
x, 0) = f(2
12 + x, 0)
g(x, 0) = f(2
x, 0) = f(2
12 + x, 0)
g(x, 0) = g(x + 12, 0)
g(x) is periodic with period
Q.4. Let f(x) =
. Show that f(x) + f(1 - x) = 1 & hence, evaluate
Ans: f(x) =
................................................. (i)
and f(1 - x) =
.............................. (ii)
Adding (i) & (ii), we get
f(x) + f(1 - x) =
+
f(x) + f(1 - x) = 1 ............................................. (iii)
Now, putting x =
in (iii).
........................
........................
........................
........................
........................
........................
or
Adding all.
[
Dumb Question: For what
is added ?
Ans: For
]
= 997 +
= 997.5
Q.5. Let g(x) be inverse of f(x) and f'(x) =
. Then find g'(x) in terms of g(x).
Ans: Since g(x) is inverse of f(x)
(gof)(x) = x
g{f(x)} = x
g'{f(x)} f'(x) = 1
g'{f(x)} =
= 1 + x
3
g'{f(g(x))} = 1 + (g(x))
3
g'(x) = 1 + (g(x))
3
Dumb Question: How f(g(x)) = x ?
Ans: Since g(x) is inverse of f(x)
f(x) is also inverse of g(x)
By inverse property
f(g(x)) = x