Hard Type
Q1. Prove that a2 + b2 + c2 + 2abc < 2 where a, b, c, are sides of ABC such that a + b + c = 2
Ans: a + b + c = 2
1 - a + 1 - b + 1 - c = 1
x + y + z = 1 where x = 1 - a, y = 1 - b, z = 1 - c Sine in  Sum of two sides > third side a + b > c 0 < c < 1 Similarly 0 < a, b < 1 hence 0 < x, y, z < 1 Now, a2 + b2 + c2 + 2abc = (1 - x)2 + (1 - y)2 + (1 - z)2 + 2(1 - x)(1 - y)(1 - z)
= 3 - 2(x + y + z) + x2 + y2 + z2 + 2{1 - (x + y + z) + (xy + yz + zx) - xyz}
= 1 + x2 + y2 + z2 - 2xyz + 2(xy + yz + zx)
= 1 + (x + y + z)2 - 2xyz
= 2 - 2xyz < 2 as 0 < x, y, z < 1
a2 + b2 + c2 + 2abc < 2
Dumb Question: How 0 < c < 1 ?
Ans: Since gn , Sum of two sides > third side a + b > c ............................................. (i) or a + b + c > 2c 2 > 2c c < 1 ..................................... (ii) Since c is side of 
c > 0 ............................................... (iii)
From (ii) & (iii) 0 < c < 1
Q.2. A function R R is f(x) = . Find integral value of for which f is onto.
Ans: Since f : R R is onto mapping
Range = codomain = R
assumes all real values of x Let y = 
x2( + 8y) + 6x(1 - y) - (8 - y) = 0 v y R
D 0 36(1 - y)2 + 4( + 8y)(8 + y) 0
[y2(8 + 9) + y( 2 + 46) + (8 + 9) 0 ax2 + bx + c 0 v x R if a > 0 & D 0 ( 2 + 46)2 - 4(8 + 9)(8 + 9) 0 & (8 + 9) > 0
( 2 + 46)2) - [2(8 + 9)]2 0 & > - 
( 2 + 46 - 16 - 18)( 2 + 46 + 16 + 18) 0 & > - 
( - 14)( - 2)( + 8)2 0 and > - 
[2, 14] {-8} and > - 
[2, 14]
Q.3. Solve the eq. [x]{x} = x
Ans: x = [x] + {x} .................................. (i)
[x]{x} = [x] + {x} {x} = ............................. (ii) [x] 1 in eq. (ii) But if [x] = 1, then {x} = x which is donje only when, x [0, 1) ................................................. (iii) & [x] = 1 [1, 2) ................................. (iv)
From (iii) & (iv) no value of x, when [x] = 1 As we know {x} [0, 1)
0 < 1 < 1 & 0
< 0 & {[x] 0 or [x] > 1}
[x] < 1 & {[x] 0 or [x] > 1}
[x] 0
x = [x] + {x} = [x] +  x = , where x takes values less than 1.
x = , where x < 1 x = , where [x] is any non positive integer.
Q4. Sketch y = (x - 1)(x - 2)
Ans: y = (x - 1)(x - 2) (i) put y = 0 x = 1, 2 (ii) y = x2 - 3x + 2
= 2x - 3 &  as > 0
minimaq at x = 3/2.
(iii) Increases when x > 3/2 & decreases when x < 3/2. y = x2 - 3x + 2 when x = 3/2 y = 
Q5. Sketch curve y = (x - 1)(x - 2)(x - 3)
Ans: y = (x - 1)(x - 2)(x - 3) (i) Put y = 0 x = 1, 2, 3 (ii) y = x3 - 6x2 + 11x - 6
= 3x2 - 12x + 11 & = 6x - 12 when = 0 x =  Maxima when x = as = - 2 Minima when x = as = 2
(iii) = 3x2 - 12x + 11 = 3(x - )(x - )
> 0 or Increases when x < or x >  Decreases when < 0 or < x < 
(iv) Concave upwards when x > 2 & concave down when x < 2.
x = 2 is point where concavity of curve changes.
Key Words:
* Function. * Domain. * Codomain. * Range. * Identity Function. * Constant Function. * Logarithmic Function. * Modulus Function. * Signum Function. * Greatest Integer Function. * Fractional Part Function. * Odd & Even Function. * Periodic Function. * Composite Function. * Mapping. * Bijective. * Surjective. * Injective. * Inverse of Function. |
|
| |
|
|