Logarithms - 2

  1. loga(m/n) = logam - logan
    Why ?
    Let logam = x
          logan = y
    m = ax and n = ay [Using definition]
         m/n = ax/ay = ax - y
    => logam/n = x - y
                      = logam - logan

  2. logamn = n logam.
    why ?
    Let logamn = y
    By definition ay = mn
                  or, ay/x = m
    Again using definition of log
           logam = y/x
    or n logam = y
    so, logamn = n logam.

    Illustration - 2. If log1227 = a, then log316 = ??
    log316 = log324 = 4 log32 ……………………………………….. (i)
    Now, log1227 = log1233
                          = 3 log123
                          =
    So, log32 =
    Now, log3 =

    *7. log = logan
    log = p logaqn - (Using formula 6.)
                 = p - (Using formula 3.)
                 = - (Using formula 6.)
                 = - (Using formula 3.)

    *8. = n

    Illustration - 3.
    Evaluate.

              = (Using formula 7)

    (Using formula 6)
    = 9 (using formula 8)
    Hence = 9

          logpa > logpb
    => a b if p is greater than 1 i.e. p > 1
    or b a if p is positive and less than 1, 0 < p < 1

    Remembering Tip:- If base if > 1 then inequality remains same and if base is + ve but less than 1 then sign of inequality is reversed.
    Why ?
    Let logpa = x
          logpb = y
    So, a = px
    and b = py
    Now x > y is given
    So, if p > 1
    then a b
    and if 0 < p < 1
    then a b

Related Guides