Logarithms - 3

Illustration - 4.
If log0.2(x - 1) < log0.4(x - 1) then x lies interval.
Now, log0.2(x - 1) <
=> log0.2(x - 1) < log0.2(x - 1)
=> log0.2(x - 1) < 0
or, log0.2(x - 1) < 0 = log0.21
Since 0.2 is less than 1 so, x - 1 > 1 or x > 2

log - flow Questions
Easy
Q1. Find the value of log8128 ?
Ans:- log8128 =
                      = log22
                      =

Q2. What is the approx vaslue of log19.903 ?
Ans:- The value does not exist because the base of a logarithm cannot be 1.

Q3. Find solution of the equation ?
Ans:- = 2- 6
So, = - 6
- = log3x
So, x =

Q4. Find equation logex + loge(1 + x) = 0 free from log ?
Ans:- logex + loge(1 + x) = 0
=> loge(x(1 + x)) = 0
So, x(1 + x) = 1
or, x2 + x + 1 = 0

Q5. If log2x  X  log2 + 4 = 0 then find the value of x.
Ans:- log2x  X  (log2x - log216) + 4 = 0
=> (log2x)2 - 4 log22 log2x + 4 = 0
=> (log2x)2 - 4 log22 + 4 = 0
=> (log2x - 2)2 = 0
=> log2x = 2
or, x = 4.

Q6. If 2 log8N = p, log22N = q and q - p = 4 then find the value of N ?
Ans:-      p = 2 log8N
                 = log2N
              q = log22N
                 = log22 + log2N
                 = 1 + log2N
        q - p = 1 + log2 N - log2N
                 = 1 + log2N = 4 (Given)
So, log2N = 9
0r N = 29 = 512

Q7. If a, b, c are consecutive positive integrals and log(1 + ac) = 2K then find value of K ?
Ans:- Let a = n
         b = n + 1
         c = n + 2
So, log(1 + ac) = log(1 + n(n + 2))
                        = log(1 + n2 + 2n)
                        = log(n + 1)2
                        = 2 log(n + 1)
                        = 2 logb
Value of K is logb.

Q8. Find value of x if log3x.logy3.log2y = 5 ?
Ans:-   log3x.logy3.log2y = log3x.log23
                                      = log2x
                                      = 5 (Given)
So, x = 25 = 32.

Q9. The value of eln(ln 7) IS 7, True or false.
Ans:-   eln(ln 7) = ln 7ln e
                       = ln 7
So, it is false.








Related Guides