Illustration - 4.
If log
0.2(x - 1) < log
0.4(x - 1) then x lies interval.
Now, log
0.2(x - 1) <
=> log
0.2(x - 1) <
log
0.2(x - 1)
=>
log
0.2(x - 1) < 0
or, log
0.2(x - 1) < 0 = log
0.21
Since 0.2 is less than 1 so, x - 1 > 1 or x > 2
log - flow Questions
Easy
Q1. Find the value of log
8128 ?
Ans:- log
8128 =
=
log
22
=
Q2. What is the approx vaslue of log
19.903 ?
Ans:- The value does not exist because the base of a logarithm cannot be 1.
Q3. Find solution of the equation
?
Ans:-
= 2
- 6
So,
= - 6
-
= log
3x
So, x =
Q4. Find equation log
ex + log
e(1 + x) = 0 free from log ?
Ans:- log
ex + log
e(1 + x) = 0
=> log
e(x(1 + x)) = 0
So, x(1 + x) = 1
or, x
2 + x + 1 = 0
Q5. If log
2x X log
2 + 4 = 0 then find the value of x.
Ans:- log
2x X (log
2x - log
216) + 4 = 0
=> (log
2x)
2 - 4 log
22 log
2x + 4 = 0
=> (log
2x)
2 - 4 log
22 + 4 = 0
=> (log
2x - 2)
2 = 0
=> log
2x = 2
or, x = 4.
Q6. If 2 log
8N = p, log
22N = q and q - p = 4 then find the value of N ?
Ans:- p = 2 log
8N
=
log
2N
q = log
22N
= log
22 + log
2N
= 1 + log
2N
q - p = 1 + log
2 N -
log
2N
= 1 +
log
2N = 4 (Given)
So, log
2N = 9
0r N = 2
9 = 512
Q7. If a, b, c are consecutive positive integrals and log(1 + ac) = 2K then find value of K ?
Ans:- Let a = n
b = n + 1
c = n + 2
So, log(1 + ac) = log(1 + n(n + 2))
= log(1 + n
2 + 2n)
= log(n + 1)
2
= 2 log(n + 1)
= 2 logb
Value of K is logb.
Q8. Find value of x if log
3x.log
y3.log
2y = 5 ?
Ans:- log
3x.log
y3.log
2y = log
3x.log
23
= log
2x
= 5 (Given)
So, x = 2
5 = 32.
Q9. The value of e
ln(ln 7) IS 7, True or false.
Ans:- e
ln(ln 7) = ln 7
ln e
= ln 7
So, it is false.