# Maths Solving made easy!!!!

Beauty of Mathematics

Sequential Inputs of numbers with 8 |

1 x 8 + 1 = 9 |

12 x 8 + 2 = 98 |

123 x 8 + 3 = 987 |

1234 x 8 + 4 = 9876 |

12345 x 8 + 5 = 98765 |

123456 x 8 + 6 = 987654 |

1234567 x 8 + 7 = 9876543 |

12345678 x 8 + 8 = 98765432 |

123456789 x 8 + 9 = 987654321 |

Sequential 1’s with 9 |

1 x 9 + 2 = 11 |

12 x 9 + 3 = 111 |

123 x 9 + 4 = 1111 |

1234 x 9 + 5 = 11111 |

12345 x 9 + 6 = 111111 |

123456 x 9 + 7 = 1111111 |

1234567 x 9 + 8 = 11111111 |

12345678 x 9 + 9 = 111111111 |

123456789 x 9 + 10 = 1111111111 |

Sequential 8’s with 9 |

9 x 9 + 7 = 88 |

98 x 9 + 6 = 888 |

987 x 9 + 5 = 8888 |

9876 x 9 + 4 = 88888 |

98765 x 9 + 3 = 888888 |

987654 x 9 + 2 = 8888888 |

9876543 x 9 + 1 = 88888888 |

98765432 x 9 + 0 = 888888888 |

Numeric Palindrome with 1’s |

1 x 1 = 1 |

11 x 11 = 121 |

111 x 111 = 12321 |

1111 x 1111 = 1234321 |

11111 x 11111 = 123454321 |

111111 x 111111 = 12345654321 |

1111111 x 1111111 = 1234567654321 |

11111111 x 11111111 = 123456787654321 |

111111111 x 111111111 = 12345678987654321 |

Without 8 |

12345679 x 9 = 111111111 |

12345679 x 18 = 222222222 |

12345679 x 27 = 333333333 |

12345679 x 36 = 444444444 |

12345679 x 45 = 555555555 |

12345679 x 54 = 666666666 |

12345679 x 63 = 777777777 |

12345679 x 72 = 888888888 |

12345679 x 81 = 999999999 |

Sequential Inputs of 9 |

9 x 9 = 81 |

99 x 99 = 9801 |

999 x 999 = 998001 |

9999 x 9999 = 99980001 |

99999 x 99999 = 9999800001 |

999999 x 999999 = 999998000001 |

9999999 x 9999999 = 99999980000001 |

99999999 x 99999999 = 9999999800000001 |

999999999 x 999999999 = 999999998000000001 |

……………………………….. |

Sequential Inputs of 6 |

6 x 7 = 42 |

66 x 67 = 4422 |

666 x 667 = 444222 |

6666 x 6667 = 44442222 |

66666 x 66667 = 4444422222 |

666666 x 666667 = 444444222222 |

6666666 x 6666667 = 44444442222222 |

66666666 x 66666667 = 4444444422222222 |

666666666 x 666666667 = 444444444222222222 |

……………………………….. |

Here are few amazing prime numbers, these prime numbers were proved by the XVIII^{th} century. |

31 |

331 |

3331 |

33331 |

333331 |

3333331 |

33333331 |

The next number 333333331 is not a prime number. Whereas it is multiplied by 17 x 19607843 = 333333331. |

Names for Powers of 10

Values |
Zero’s |
Names |

10^{0} |
0 |
One |

10^{1} |
1 |
Ten |

10^{2} |
2 |
Hundred |

10^{3} |
3 |
Thousand |

10^{4} |
4 |
Myriad |

10^{6} |
6 |
Million |

10^{9} |
9 |
Billion |

10^{12} |
12 |
Trillion |

10^{15} |
15 |
Quadrillion |

10^{18} |
18 |
Quintillion |

10^{21} |
21 |
Sextillion |

10^{24} |
24 |
Septillion |

10^{27} |
27 |
Octillion |

10^{30} |
30 |
Nonillion |

10^{33} |
33 |
Decillion |

10^{36} |
36 |
Undecillion |

10^{39} |
39 |
Duodecillion |

10^{42} |
42 |
Tredecillion |

10^{45} |
45 |
Quattuordecillion |

10^{48} |
48 |
Quindecillion |

10^{51} |
51 |
Sexdecillion |

10^{54} |
54 |
Septdecillion / Septendecillion |

10^{57} |
57 |
Octodecillion |

10^{60} |
60 |
Nondecillion / Novemdecillion |

10^{63} |
63 |
Vigintillion |

10^{66} |
66 |
Unvigintillion |

10^{69} |
69 |
Duovigintillion |

10^{72} |
72 |
Trevigintillion |

10^{75} |
75 |
Quattuorvigintillion |

10^{78} |
78 |
Quinvigintillion |

10^{81} |
81 |
Sexvigintillion |

10^{84} |
84 |
Septenvigintillion |

10^{87} |
87 |
Octovigintillion |

10^{90} |
90 |
Novemvigintillionn |

10^{93} |
93 |
Trigintillion |

10^{96} |
96 |
Untrigintillion |

10^{99} |
99 |
Duotrigintillion |

10^{102} |
102 |
Trestrigintillion |

10^{120} |
120 |
Novemtrigintillion |

10^{123} |
123 |
Quadragintillion |

10^{138} |
138 |
Quinto-Quadragintillion |

10^{153} |
153 |
Quinquagintillion |

10^{180} |
180 |
Novemquinquagintillion |

10^{183} |
183 |
Sexagintillion |

10^{213} |
213 |
Septuagintillion |

10^{240} |
240 |
Novemseptuagintillion |

10^{243} |
243 |
Octogintillion |

10^{261} |
261 |
Sexoctogintillion |

10^{273} |
273 |
Nonagintillion |

10^{300} |
300 |
Novemnonagintillion |

10^{303} |
303 |
Centillion |

10^{309} |
309 |
Duocentillion |

10^{312} |
312 |
Trescentillion |

10^{351} |
351 |
Centumsedecillion |

10^{366} |
366 |
Primo-Vigesimo-Centillion |

10^{402} |
402 |
Trestrigintacentillion |

10^{603} |
603 |
Ducentillion |

10^{624} |
624 |
Septenducentillion |

10^{903} |
903 |
Trecentillion |

10^{2421} |
2421 |
Sexoctingentillion |

10^{3003} |
3003 |
Millillion |

10^{3000003} |
3000003 |
Milli-Millillion |

Trick Play

**Trick 1: Number below 10**

__Step1__: Think of a number below 10.

__Step2__: Double the number you have thought.

__Step3__: Add 6 with the getting result.

__Step4__: Half the answer, that is divide it by 2.

__Step5__: Take away the number you have thought from the answer, that is, subtract the answer from the number you have thought.

## Answer: 3

**Trick 2: Any Number**

__Step1__: Think of any number.

__Step2__: Subtract the number you have thought with 1.

__Step3__: Multiply the result with 3.

__Step4__: Add 12 with the result.

__Step5__: Divide the answer by 3.

__Step6__: Add 5 with the answer.

__Step7__: Take away the number you have thought from the answer, that is, subtract the answer from the number you have thought.

## Answer: 8

**Trick 3: Any Number**

__Step1__: Think of any number.

__Step2__: Multiply the number you have thought with 3.

__Step3__: Add 45 with the result.

__Step4__: Double the result.

__Step5__: Divide the answer by 6.

__Step6__: Take away the number you have thought from the answer, that is, subtract the answer from the number you have thought.

## Answer: 15

**Trick 4: Same 3 Digit Number**

__Step1__: Think of any 3 digit number, but each of the digits must be the same as. Ex: 333, 666.

__Step2__: Add up the digits.

__Step3__: Divide the 3 digit number with the digits added up.

## Answer: 37

**Trick 5: 2 Single Digit Numbers**

__Step1__: Think of 2 single digit numbers.

__Step2__: Take any one of the number among them and double it.

__Step3__: Add 5 with the result.

__Step4__: Multiply the result with 5.

__Step5__: Add the second number to the answer.

__Step6__: Subtract the answer with 4.

__Step7__: Subtract the answer again with 21.

### Answer: 2 Single Digit Numbers.

**Trick 6: 1, 2, 4, 5, 7, 8**

__Step1__: Choose a number from 1 to 6.

__Step2__: Multiply the number with 9.

__Step3__: Multiply the result with 111.

__Step4__: Multiply the result by 1001.

__Step5__: Divide the answer by 7.

### Answer: All the above numbers will be present.

**Trick 7: 1089**

__Step1__: Think of a 3 digit number.

__Step2__: Arrange the number in descending order.

__Step3__: Reverse the number and subtract it with the result.

__Step4__: Remember it and reverse the answer mentally.

__Step5__: Add it with the result, you have got.

## Answer: 1089

**Trick 8: x7x11x13**

__Step1__: Think of a 3 digit number.

__Step2__: Multiply it with x7x11x13.

### Ex: Number: 456, Answer: 456456

**Trick 9: x3x7x13x37**

__Step1__: Think of a 2 digit number.

__Step2__: Multiply it with x3x7x13x37.

### Ex: Number: 45, Answer: 454545

**Trick 10: 9091**

__Step1__: Think of a 5 digit number.

__Step2__: Multiply it with 11.

__Step3__: Multiply it with 9091.

### Ex: Number: 12345, Answer: 1234512345

Day of the Date

**Day of the Week:**

January has 31 days. It means that every date in February will be 3 days later than the same date in January(28 is 4 weeks exactly). The below table is calculated in such a way. Remember this table which will help you to calculate.

January | 0 |

February | 3 |

March | 3 |

April | 6 |

May | 1 |

June | 4 |

July | 6 |

August | 2 |

September | 5 |

October | 0 |

November | 3 |

December | 5 |

__Step1__: Ask for the Date. Ex: 23

^{rd}June 1986

__Step2__: Number of the month on the list, June is 4.

__Step3__: Take the date of the month, that is 23

__Step4__: Take the last 2 digits of the year, that is 86.

__Step5__: Find out the number of leap years. Divide the last 2 digits of the year by 4, 86 divide by 4 is 21.

__Step6__: Now add all the 4 numbers: 4 + 23 + 86 + 21 = 134.

__Step7__: Divide 134 by 7 = 19 remainder 1.

The reminder tells you the day.

Sunday | 0 |

Monday | 1 |

Tuesday | 2 |

Wednesday | 3 |

Thursday | 4 |

Friday | 5 |

Saturday | 6 |