Table of Integrals - Useful referance

1 - Integrals of Elementary Functions.




1.1   ò dx = x + c



1.2   ò k dx = k x + c , where k is a constant.



1.3   ò x n dx = x n + 1 / (n + 1) + c



1.4   ò (1 / x) dx = ln |x| + c

 


2 - Integrals of Elementary Trigonometric Functions : sin x, cos x, tan x, cot x, sec x and csc x.




2.1   ò sin x dx = -cos x + c



2.2   ò cos x dx = sin x + c



2.3   ò tan x dx = ln |sec x| + c



2.4   ò cot x dx = ln |sin x| + c



2.5   ò sec x dx = ln |sec x + tan x| + c



2.6   ò csc x dx = ln |csc x - cot x| + c 

 


3 - Integrals Involving More Than One Trigonometric Function.




3.1   ò sec x tan x dx = sec x + c



3.2   ò csc x cot x dx = -csc x + c



3.3   ò sin mx sin nx dx =



-sin [(m + n)x] / 2(m + n) + sin [(m - n)x] / 2(m - n) + c



with m not equal to n.



3.4   ò cos mx cos nx dx =



sin [(m + n)x] / 2(m + n) + sin [(m - n)x] / 2(m - n) + c



with m not equal to n.



3.5   ò sin mx cos nx dx =



-cos [(m + n)x] / 2(m + n) - cos [(m - n)x] / 2(m - n) + c



with m not equal to n.




 


4 - Integrals Involving Exponential and Logarithmic Functions.




4.1   ò e x dx = e x + c



4.2   ò a x dx = a x / ln a + c



4.3   ò ln x dx = x ln x - x + c


 


5 - Integrals of Inverse Trigonometric functions: arcsin x, arccos x, arctan x, arccot x, arcsec x and arccsc x.




5.1   ò arcsin x dx = x arcsin x + sqrt (1 - x 2) + c



5.2   ò arccos x dx = x arccos x - sqrt (1 - x 2) + c



5.3   ò arctan x dx = x arctan x - ln [sqrt (1 + x 2)] + c



5.4   ò arccot x dx = x arccot x + ln sqrt (1 + x 2) + c



5.5   ò arcsec x dx = x arcsec x - ln [x + sqrt (x 2 - 1)] + c



5.6   ò arccsc x dx = x arccsc x + ln [x + sqrt (x 2 - 1)] + c




 


6 - Integrals Involving Exponential and Sine and Cosine Functions.




6.1   òe ax sin bx dx = (e ax / (a 2 + b 2) (a*sin bx - b*cos bx) + c



6.2   òe ax cos bx dx = (e ax / (a 2 + b 2) (b*sin bx + a*cos bx) + c

 


7 - Integrals Involving Hyperbolic Functions: sinh x, cosh x, tanh x, coth x, sech x, csch x.




7.1   ò sinh x dx = cosh x + c



7.2   ò cosh x dx = sinh x + c



7.3   ò sech x tanh x dx = -sech x + c



7.4   ò csch x coth x dx = -csch x + c



7.5   ò sech 2 x dx = tanh x + c



7.6   ò csch 2 x dx = -coth x + c

Related Guides