trignometric-ratios-and-identities-2
Math: Trignometry Chapter
Illustration 2:Find the value of tan (10200) ?
10200 = 10 X 900 + 300
If lies in the IV th Quadrant.
So, tan (10 X 900 + 300 ) = - tan 300
= -

Trignometric Ratios of Compound angles:
(1) sin (A + B) = sin A cos B + cos A sin B
Why?
Draw < A o B = < A and < boc = < B .
And find any point P on oc.

Draw PM and PN
to OA and oB respectively.Through N draw NR parrallel to AO t meet MP in R and other N
OA< R P N = 900 - < P N R
= < R N O = < NO
= < ASo, sin (A + B) = sin A o P =

=

= sin A cos B + cos A sin B .
(2) os (A + B) = cos A cos B - sin A sin B
Why ?
cos(A + B) = sin(
- (A + B))= sin((
- A) - (-B))= sin (
- A) cos (- B) + cos (
- A) sin(- 6)= cos A cos B - sin A sin B .
3) sin (A + B) = sin A cos B - cos A sin B
4) cos (A + B) = cos A cos B + sin A sin B
5) tan (A + B) =

6) tan (A + B) =

7) cot (A + B) =

8) cot (A + B) =

Illustration 3:
If A + B = 45 0, show that (1 + tan A) (1 + tan B) = 2.
Ans:- tan (A + B) =

1 =
(
A + B = 45o.so tan (A + B) = 1 )So, tan A + tan B + tan A tan B = 1
or, tan A + tan B + tan A + tan B + 1 = 2
or, (tan A + 1) (tan B + 1) = 2
Some more farmulae:
1) 2 sin A cos B = sin (A + B) + sin(A - B)
Why ?
Add sin (A + B) = sin A cos B + cosA sin B
& sin (A + B) = sin A cos B - cos A sin B
2) 2cos A sin B =sin(A + B) - sin(A - B)
3) 2cos A cos B =cos(A + B) - cos(A - B)
4) 2sin A sin B =cos(A + B) - cos(A - B)
5) sin C + sin D = 2 sin
cos 
Why ?
Put A + B = C
and A - B = D
in sin (A + B) + sin (A - B) = 2sin A cos B .
6) sin C - sin D = 2 cos
sin 
7) cis C + cos D = 2 cos
cos
8) cos C - cos D = 2 sin
sin
Illustration 4:
Proove that sin
= 0Ans:- sin

= sin

=
[ using sin(
)= sin
, sin (
) = - sin
]
= sin

= sin

= sin - sin
- sin
= 0