study material-mathematics-trignometry
trignometric-ratios-and-identities-3
Math: Trignometry Chapter
Trignometri Ratios multiples of an angle :
1) sin 2
= 2sin
cos
= 
why ? sin (A +B) = sin A cos B + cos A sin B
Put A = B =
So, sin 2
= 2sin
cos
=
=
2) cos2
= cos2
-sin2
= 1 - 2 sin2
= cos2
- 1
=
3) tan 2
= 
4) sin 3
= 3 sin
- 4sin2 
Why ?
sin3
= sin (
+ 2
)
sin (
+ 2
) = sin
cos2
+ cos
sin2
= sin
( 1 - 2 sin2
) + cos
(2sin
cos
)
= sin
- 2sin3
+ 2sin
(1 - sin2
)
= 3 sin
- 4 sin3
5) cos 3
= 4 cos3
- 3 cos
6) tan 3
= 
Illustration 5:
sin x + sin y = a and cos x + cos y = b , show that
sin (x + y) =
and tan (x - y) 
Ans:- sin x + sin y = a
=> 2 sin
= a ...................(1)
cos x + cos y = b
=> 2 cos
= b ...................(2)
=> tan 
sin (x + y) =
=
Squaring (1), (2) and adding .
4 cos2
= a2 +b2
or cos2
= 
sin2
= 1 - 
=
tan2
tan
= 
Illustration 6:-
Find the value of sin180 ?
Ans:- Let
180
So, 5
= 900
=> 2
= 900 - 3 
Or, sin 2
= sin (900 - 3
)
=> sin 2
=cos3
=> 2sin
cos
= cos
(4 cos2
- 3)
=> 2sin
= 4cos2
- 3 (
cos
0)
= 1 - 4sin2
=> 4sin2
+ 2 sin
- 1 = 0
So, sin
= 
=
But since sin
> 0 we have sin
=
So, sin 18 o =
Dumb Question:- Why cos
is not equal to 0 ?
Ans: cos 900 si O and cos Oo is 1
So, cos being a continous function.
cos
i.e. cos 180 would have some value between o and 1.
1) sin 2




why ? sin (A +B) = sin A cos B + cos A sin B
Put A = B =

So, sin 2



=

=

2) cos2




= cos2

=

3) tan 2


4) sin 3



Why ?
sin3



sin (






= sin





= sin




= 3 sin


5) cos 3



6) tan 3


Illustration 5:
sin x + sin y = a and cos x + cos y = b , show that
sin (x + y) =


Ans:- sin x + sin y = a
=> 2 sin

cos x + cos y = b
=> 2 cos



sin (x + y) =

=

Squaring (1), (2) and adding .
4 cos2


or cos2


sin2


=

tan2

tan


Illustration 6:-
Find the value of sin180 ?
Ans:- Let

So, 5

=> 2


Or, sin 2


=> sin 2


=> 2sin




=> 2sin





= 1 - 4sin2

=> 4sin2


So, sin


=

But since sin



So, sin 18 o =

Dumb Question:- Why cos

Ans: cos 900 si O and cos Oo is 1
So, cos being a continous function.
cos
