study material-mathematics-trignometry
trignometric-ratios-and-identities-3
Math: Trignometry Chapter
Trignometri Ratios multiples of an angle :
1) sin 2 = 2sin cos=
why ? sin (A +B) = sin A cos B + cos A sin B
Put A = B =
So, sin 2 = 2sin cos
=
=
2) cos2 = cos2 -sin2 = 1 - 2 sin2
= cos2 - 1
=
3) tan 2 =
4) sin 3 = 3 sin - 4sin2
Why ?
sin3 = sin ( + 2 )
sin ( + 2) = sin cos2+ cos sin2
= sin ( 1 - 2 sin2) + cos (2sincos)
= sin - 2sin3 + 2sin (1 - sin2)
= 3 sin - 4 sin3
5) cos 3 = 4 cos3 - 3 cos
6) tan 3 =
Illustration 5:
sin x + sin y = a and cos x + cos y = b , show that
sin (x + y) = and tan (x - y)
Ans:- sin x + sin y = a
=> 2 sin = a ...................(1)
cos x + cos y = b
=> 2 cos = b ...................(2)
=> tan
sin (x + y) =
=
Squaring (1), (2) and adding .
4 cos2 = a2 +b2
or cos2 =
sin2 = 1 -
=
tan2
tan =
Illustration 6:-
Find the value of sin180 ?
Ans:- Let 180
So, 5 = 900
=> 2 = 900 - 3
Or, sin 2 = sin (900 - 3)
=> sin 2 =cos3
=> 2sin cos= cos(4 cos2 - 3)
=> 2sin = 4cos2 - 3 ( cos 0)
= 1 - 4sin2
=> 4sin2 + 2 sin - 1 = 0
So, sin =
=
But since sin > 0 we have sin =
So, sin 18 o =
Dumb Question:- Why cos is not equal to 0 ?
Ans: cos 900 si O and cos Oo is 1
So, cos being a continous function.
cosi.e. cos 180 would have some value between o and 1.
1) sin 2 = 2sin cos=
why ? sin (A +B) = sin A cos B + cos A sin B
Put A = B =
So, sin 2 = 2sin cos
=
=
2) cos2 = cos2 -sin2 = 1 - 2 sin2
= cos2 - 1
=
3) tan 2 =
4) sin 3 = 3 sin - 4sin2
Why ?
sin3 = sin ( + 2 )
sin ( + 2) = sin cos2+ cos sin2
= sin ( 1 - 2 sin2) + cos (2sincos)
= sin - 2sin3 + 2sin (1 - sin2)
= 3 sin - 4 sin3
5) cos 3 = 4 cos3 - 3 cos
6) tan 3 =
Illustration 5:
sin x + sin y = a and cos x + cos y = b , show that
sin (x + y) = and tan (x - y)
Ans:- sin x + sin y = a
=> 2 sin = a ...................(1)
cos x + cos y = b
=> 2 cos = b ...................(2)
=> tan
sin (x + y) =
=
Squaring (1), (2) and adding .
4 cos2 = a2 +b2
or cos2 =
sin2 = 1 -
=
tan2
tan =
Illustration 6:-
Find the value of sin180 ?
Ans:- Let 180
So, 5 = 900
=> 2 = 900 - 3
Or, sin 2 = sin (900 - 3)
=> sin 2 =cos3
=> 2sin cos= cos(4 cos2 - 3)
=> 2sin = 4cos2 - 3 ( cos 0)
= 1 - 4sin2
=> 4sin2 + 2 sin - 1 = 0
So, sin =
=
But since sin > 0 we have sin =
So, sin 18 o =
Dumb Question:- Why cos is not equal to 0 ?
Ans: cos 900 si O and cos Oo is 1
So, cos being a continous function.
cosi.e. cos 180 would have some value between o and 1.