study material-mathematics-trignometry
trignometric-ratios-and-identities-4
Some nice manipulations:
-
Why ? = cos2 sin2 2sin cos
= 1 2sincos
= 1 sin2
-
Why ?
=
- cos Asin A =
Why !
cos A sin A =
=
=
Expressing sin in terms of sin A:
=
=
The ambiguity of sign is removed from following figure.
Dumb Question: Where does this diagram come from ?
Ans:-
So, if is in I st or IInd quadrent
then is + ve.
So, A/2 lie from 2n for to be + ve
Similarily for
Illustration 7:
If cos 250 + sin 25 0 = P , then find value of cos 500 in trems of P ?
Ans:- cos500 = cos2 25 0 - sin2 250
= (cos 250 + sin250)(cos 250 - sin250)
P(cos250 - sin250)
Also, (cos250 - sin250)2 + (cos250 - sin250)2 = 1 + 1
cos250 - sin250 = +
(+ve sign as cos 250 > sin 250)
cos500 =
The qreatest and least valume of expression (a sin + b cos)
- a sin + b cos
Why?
Let a = r cos
b = r sin so that r =
So, a sin + b cos = r (sin cos + cossin )
= r sin ( + )
Now sin ( + has minimum and maximum value as + 1 and - 1 esppectively.
So, - r rsin ( + ) r
So, - a sin + b cos
Illustration 8:
Find the minimum and maximum value of
6 sin x cos x + 4cos2 2x ?
Ans:- 6 sin x cos x + 4cos2 2x = (2sin x cos x ) + 4cos 2x
= 3 sin 2x + 4cos 2x . - 3sin 2x + 4cos2x
=> Minimum value of 6sin x cos x + 4 cos 2x is - 5
and maximum value is 5.
Sum of sine and cosine senies when angles are in AP .
(1) sin + sin =
Why ?
2sin
2sin
2sin
By adding these n lines we have.
2sin
= 2sin
S =
(2)
=
Illustration 9:
Find sum of sin -…………+ 0 n terms. Ans:- Now, sin
sin
sin
………………………………………………..
Hence the series is
sin …………
=
=