trignometric-ratios-and-identities-4

Some nice manipulations:


  1. Why ? = cos2 sin2 2sin cos
    = 1 2sincos
    = 1 sin2



  2. Why ?

    =

  3. cos Asin A =
    Why !
    cos A sin A =
    =
    =

    Expressing sin in terms of sin A:

    =
    =
    The ambiguity of sign is removed from following figure.



    Dumb Question: Where does this diagram come from ?
    Ans:-
    So, if is in I st or IInd quadrent
    then is + ve.
    So, A/2 lie from 2n for to be + ve
    Similarily for

    Illustration 7:
    If cos 250 + sin 25 0 = P , then find value of cos 500 in trems of P ?
    Ans:- cos500 = cos2 25 0 - sin2 250
    = (cos 250 + sin250)(cos 250 - sin250)
    P(cos250 - sin250)
    Also, (cos250 - sin250)2 + (cos250 - sin250)2 = 1 + 1
    cos250 - sin250 = +
    (+ve sign as cos 250 > sin 250)
    cos500 =

    The qreatest and least valume of expression (a sin + b cos)

  • a sin + b cos


    Why?
    Let a = r cos
    b = r sin so that r =
    So, a sin + b cos = r (sin cos + cossin )
    = r sin ( + )
    Now sin ( + has minimum and maximum value as + 1 and - 1 esppectively.
    So, - r rsin ( + ) r
    So, - a sin + b cos

    Illustration 8:
    Find the minimum and maximum value of
    6 sin x cos x + 4cos2 2x ?
    Ans:- 6 sin x cos x + 4cos2 2x = (2sin x cos x ) + 4cos 2x
    = 3 sin 2x + 4cos 2x .
  • 3sin 2x + 4cos2x
    => Minimum value of 6sin x cos x + 4 cos 2x is - 5
    and maximum value is 5.

    Sum of sine and cosine senies when angles are in AP .
    (1) sin + sin =
    Why ?

    2sin
    2sin
    2sin
    By adding these n lines we have.
    2sin
    = 2sin
    S =

    (2)
    =

    Illustration 9:
    Find sum of sin -…………+ 0 n terms. Ans:- Now, sin
    sin
    sin
    ………………………………………………..
    Hence the series is
    sin …………
    =
    =

Related Guides