trignometric-ratios-and-identities-4
Some nice manipulations:

Why ?
= cos2
sin2
2sin
cos
= 1
2sin
cos
= 1
sin2

Why ?
=
- cos Asin A =

Why !
cos A
sin A = 
=
=
Expressing sin
in terms of sin A:
= 
= 
The ambiguity of sign is removed from following figure.
Dumb Question: Where does this diagram come from ?
Ans:-
So, if
is in I st or IInd quadrent
then
is + ve.
So, A/2 lie from 2n
for
to be + ve
Similarily for
Illustration 7:
If cos 250 + sin 25 0 = P , then find value of cos 500 in trems of P ?
Ans:- cos500 = cos2 25 0 - sin2 250
= (cos 250 + sin250)(cos 250 - sin250)
P(cos250 - sin250)
Also, (cos250 - sin250)2 + (cos250 - sin250)2 = 1 + 1
cos250 - sin250 = +
(+ve sign as cos 250 > sin 250)
cos500 =
The qreatest and least valume of expression (a sin
+ b cos
)
a sin
+ b cos

Why?
Let a = r cos
b = r sin
so that r = 
So, a sin
+ b cos
= r (sin
cos
+ cos
sin
)
= r sin (
+
)
Now sin (
+
has minimum and maximum value as + 1 and - 1 esppectively.
So, - r rsin (
+
)
r
So, -
a sin
+ b cos

Illustration 8:
Find the minimum and maximum value of
6 sin x cos x + 4cos2 2x ?
Ans:- 6 sin x cos x + 4cos2 2x = (2sin x cos x ) + 4cos 2x
= 3 sin 2x + 4cos 2x .
3sin 2x + 4cos2x

=> Minimum value of 6sin x cos x + 4 cos 2x is - 5
and maximum value is 5.
Sum of sine and cosine senies when angles are in AP .
(1) sin
+ sin
= 
Why ?
2sin
2sin
2sin
By adding these n lines we have.
2sin
= 2sin
S =
(2)
=
Illustration 9:
Find sum of sin
-…………+ 0 n terms. Ans:- Now, sin 
sin
sin
………………………………………………..
Hence the series is
sin
…………
=
=