trignometric-ratios-and-identities-5

Conditional Identities.
If A + B + C = 180o then .
(i) sin 2A + sin 2B + sin 2c = 4sinA sin B sinC.

Why ?

A + B + C = 180o
So, A + B = 180o - C
sin(A + B) = sin C
cos (A + B) = - cos C
sin 2A + sin 2B + sin 2C = 2 sin (A + B) cos (A - B) + 2sin C cos C.
= 2sin C cos (A - B) + 2sin (- cos (A + B))
= 2sin C (cos (A - B) - cos (A + B))
= 2sin C (2sin A sin B)
= 4sin A sin B sin C .

(ii) cos 2A + cos 2B + cos 2C = - 1 - 4cos A cosB cosC

(iii) sinA + sinB + sinC = 4 cos

(iv) cosA + cosB + cosC = 1 + 1 + 4sin

(v) tanA + tanB + tanC =tanA tanB tanC

Why ?
tan (A + B + C) =
=
=
So, since tan (A + B + C) = tan (1800) = 0
So, tanA + tanB + tanC - tanA + tanB + tanC = 0
=> tanA + tanB + tanC = tanA + tanB + tanC.

(vi) cotA + cotB + cotA + cotC + cotB cotC = 1

(vii)

(viii)

Illustration 10:
If A + B + C = 180 o then prove that
sin2 A + sin2 C = 2 + 2 cosA cosB cosC.
Ans:- sin2A + sin2B + sin2C = 1/2 (1 - cos2A + 1 - cos2B + 1 - cos2C)
= (3 - (cos2A + cos2B + cos2C))
= [3 - (- 1 - 4cosA cosB cosC)]
= [4 + 4cosA cosB cosC]
= cosA cosB cosC
= 2 + 2 cosA cosB cosC

  1. Question - If sin + cosec = 2 then what is the value of sin2 + coses2.
    Solution:- sin2 + cosesc2 = (sin + cosec)2 - 2sin cosec
    = (1 + 1)2 - 2.1 = 2

  2. Prove that 2(sin6 + cos6) - 3(sin4 + cos4 ) + 1 = 0
    Solution:- L.H.S. 2 [ (sin2 + cos2)3 - 3sin2cos2(sin2+ cos2) ] -[ (sin2 + cos2)3 - 3sin2cos2] + 1
    = 2 [ 1 - 3 sin2cos2] - 3 [ 1 - 2sin2cos2] + 1
    = 0

  3. Prove that for all real

    Solution sin2 + cos4 - cos2 + 1

    =

    =

    Also, sin2 + cos2 = cos4- cos2 + 1

    = cos2(cos2 - 1) + 1
    = 1 - sin2 cos2 1

    [ becaise sin2 cos2 0]

  4. Evaluate sin 78 o - sin66o - sin42 o + sin6o
    = (sin 78o - sin42o) - ( sin66o - sin6o)
    = 2cos 60o sin18o - 2cos36o. sin30o

    = sin18o - cos36o
    =
    = -

    (5) If a then find the maximum value of sinA sinB .
    Solution:- sinA sinB = 2 sinA sinB
    = [ cos (A - B) - cos (A + B)]
    = [cos (A - b) - cos 90o]
    = cos (A - B)
    So maximum valuie of sinA sinB =

    (6) Prove that cosec 20o - sec 20o = 4

    Soluction- L.H.S. =

    =

    =4.

    = 4.
    = 4.

    = 4 = R.H.S.

    (7) Find the value of,

    When | tanA | < | and | A | is acure,

    Solution:-
    =>

    =>

    => and in this interval casA > sinA }

    => => cotA

    When |tanA| < 1 and |A| is acute.

    Q. Find a and b such that for all x, a
    Soluction:- 3 cosx + 5 sin(x - ) = 3 cosx + 5 sinx cos - 5 cosx sin
                                                        = (3 - 5/2)cosx + 5 sinx
                                                        = cosx + sinx
          a =
    and b =

    (9) Find the maximum and minimum value of cos2 - 6 sin cos + 3 sin2 + 2
    Soluction:- cos2 - 6 sin.cos + 3 sin2 + 2
    = (1 - sin2) - 3 sin2 + 3 sin2 + 2
    = 2 sin2 - 3 sin2 + 3
    = (1 - cos2) - 3sin2 + 3
    = 4 - (cos2 + 3 sin2) …………………………………………. (i)
    as we have -

    or 4 -

Related Guides