trignometric-ratios-and-identities-6
(10) If a triangle ABC show that -
Solution:- Dr = sinA + sinB - sinC
Similarly Nr = 4
L.H.S. =
         Â
(11) Prove that tanA + 2 tan2A + 4 tan 4A + 8 cot 8A = cot A
L.H.S. = tanA + 2 tan2A + 4 tan4A +
           = tanA + 2 tan2A + 4 cot4A
           = tanA + 2 tan2A + 4
           = tanA + 2 cot2A
           = tanA +
           = cotA = R.H.S.
(12) If 2 cosA = x + 1/x , 2 cosB = y + 1/y show that 2 cos(A - B) = x/y + y/x
Soluction:- 2 cosA = x + 1/x   since  4 sin2A = 4 - 4 cos2A
                             = 4 - (x + 1/x)2
4 sin2A = - [(x + 1/x)2 - 4]
4 sin2A = - i2[(x - 1/x)2]
2 sinA = i(x - 1/x)
Similarily 2 cosB = y + 1/y
2 sinB = i(y - 1/y)
Now, 2 cos(A - B) = 2[cosA cosB + sinA sinB]
= R.H.S.
Medium
Q-1 Determine the smallest positive value of x(in degrees ) for which tan (x + 1000) = tan (x + 500) tan x. tan (x - 500)
Soluction:- Rearranging expression-
Applying componedo and dividendo, we get-
    Â
=> cos50o + 2sin (2x + 50o) . cos (2x + 50o) = 0
=> cos 50o + sin (4x + 100o ) = 0
=> cos50o + cos (4x + 10o ) = 0
=> cos (2x + 30o) cos(2x - 20o ) = 0
=> x = 30o , 55o
The smallest value of x = 30o
Dump Question:- Why we rearranged tha (x + 100o) = tan (x + 50o)tan x tan(x -50o)
as = tan(x + 50o) tanx.
Ans:- Well the motiration behind doing this was the fact that the sum of x + 100o and x - 50o is 2x + 50 o and also the sum of x + 50o and x is 2x + 50o
And, what more the variable x is removed when we substract the one angle from another.
The usefulness of this obserration is clearly when we use compendo and dividerdo.
Question:- If , prove that (a - b cos2)(a - b cos2) is independent of and .
Soluction:- Let us put tan = t1 and tan = t2
t12.t22 = ………………………………………………… (i)
Also, cot2 =
cos2 =
Now a - b cos2 = a - b
=
= Â Â Â [by (i)]
=
Similarily (a - b cos2) =
Hence a - b cos2)(a - b cos2) = (a + b)2t12t22 = a2 - b2
Which is independent of and .
Q. Show that
Soluction:- We know where
Also
                   Â
and
         Â
         Â
         Â