VITEEE 2009 Sample Question Papers - Mathematics

VITEEE 2009 Sample Question Papers - Chemistry -  PART – 3 [MATHEMATICS]

81.  The system of equations -

        Ans:  

                   = 1(1 - 3) - 2(1 - 2) = - 2 + 2 = 0

                   Choice (B)

82.  , then -

        Ans:   = I

                   A 4 = I

A3 = I A- 1

A2 = I A- 2

     =

A- 1 =

     =

A- 2 =  =

ab =

Þ a2b2 = 1

Þ ab = 1

Choice (D)

83.  If D = diag (d1, d2, …….., dn) where -

       

        Ans:   Choice (D)

84.  If x, y, z are different from zero and D = -

       

        Ans:   = 0

                    = 0

                  

                =

           Choice (D)

85.  Probability of getting positive integral roots of the equation, -

        Ans:   x = ±

                   n = 1, 4, 9, 16, 25, 36

                   Probability =

                   Choice (C)

86.  The number of real roots of equation -

Ans:   = 22 - x4

           x 4 + 20 = (22 - x4)2

                = 484 + x 8 - 44x4

           x 8 - 45x4 + 464 = 0

           x 4 =

                = =

                = 29, 16

           x 4 = 29 is not admissible

           Þ x4 = 16

Choice (B)

87.  Let a , b be the roots of the equation -

        Ans:   a 2- aa + b = 0

                   A n+1 - aAn + bAn- 1

                             = a n+1 + b n+1- a(a n + b n) + b(a n- 1 + b n- 1)

                   = a n- 1(a 2- aa + b) + b n- 1(b 2- ab + b)

                   = 0

                   Choice (C)

88.  If the sides of a right – angle triangle -

       

        Ans:   b, c, a ® AP

       

        a =

        sin B =

        Choice (A)

89.  The plane through the point -

       

        Ans:   x + 3y - z = 0

y + 2z = 0

Let the plane be

A(x + 1) + B(y + 1) + C(z + 1) = 0

Plane passes through the origin

A + B + C = 0

Choice (A)

90.  are one of the sides -

       

        Ans:       

                       

                                    =

                   Area =

                            =

                   Choice (D)

91.  If be three unit vectors such that -

        Ans :       =

                        =

                        =

                        cos q 2     =         Þ q 2 =

                   cos q 1 = 0           Þ q 1 =

                   Choice (C)

92.  The equation  -

        Ans:   Equation is

                   x 2 + y2 + z2 - 2xc1 - 2yc2 - 2zc3 + h = 0

                   Choice (D)

93.  The simplified expression of -

        Ans:

                   Let tan- 1 x be a Þ tan a = x

                   Then from the figure sin a =

                   Þ sin (tan- 1 x)  

                   = sin

                   Choice (B)

94.  If -

        Ans:  

Þ z lies on the line perpendicular to the real axis and divides the line segment between 1 and 25 in the ratio 1 : 5 Þ   z = (5, 0) Þ |z| = 5

                     Choice (C)

95.  Argument of the complex number -

Ans:  

                            

                                     = - (1 + i)

                   \ Arg

                   Choice (C)

96.  In a triangle ABC, the sides b and c are -

        Ans:   x 2 - 61x + 820 = 0

                   x 2 - 41x - 20x + 820 = 0

                   Þ x1,2 = 41, 20

                   A = tan- 1

                             Þ cosA =

                   \ By Cosine formula,

                   a 2 = b2 + c2 - 2bc cos A

                   a 2 = 412 + 202 - 2(41)(20)

                   = 2081 - 984 = 1097

                   Choice (C)

97.  The shortest distance between the straight lines through -

        Ans:           

                               

                   \ Shortest distance =

                   =

                   =

                   Choice (D)

98.  The center and radius of the sphere -

        Ans:   Centre is at

                   Choice (C)

99.  Let A and B are two fixed points in a plane then locus of another -

       

        Ans:   Ellipse

                   Choice (B)

100.        The directrix of the parabola -

        Ans:   y 2 = - 4x - 3

                        = - 4

                   Equation of the directrix is

                   x =

                   Choice (D)

101.        If g(x) is a polynomial satisfying g(x) -

        Ans:   g(x) . g(y) = g(x) + g(y) + g(xy) - 2 ¾ (1)

                   g(2) . g(y) = g(x) + g(y) + g(xy) - 2

5.g(y) = 5 + g(y) + g(xy) - 2

Þ 4g(y) = 3 + g(xy)

\ g(0) = 1

g(x) is given in a polynomial, and by the relation given g(x) cannot be linear.

Let g(x) = x2 + k

Since g(0) = 1 Þ g(x) = x2 + 1

Verifying (1) Þ

(x2 + 1) (y2 + 1)

             = x 2 + 1 + y2 + 1 + x2y2 + 1 - 2

(1) is satisfied by g(x) = x2 + 1

g(x) = g(3) (Q g(x) in a polynomial)

     = 10

                   Choice (B)

102.        The value of f(0) so that -

        Ans:  

                        =

                        = 2 0?n2 - 1 = l n2 - 1

                        = f(0)

                   Choice (D)

103.           Let [   ]   denote the greatest integer -

        Ans :

                   f(x) is continuous at x = 0

                   Choice (B)

104.           A spherical balloon is expanding -

        Ans : Let r be the radius and V be the volume

                   \ = 2            r = 5

                   \ V = p r3

                  

                   = 4p (5)2 ´ (2)

                   = 200 p

                   Choice (C)

105.           The length of the parabola -

Ans :

                   Length =

                         =

                         =

                         =

                          =

                         =

                        =

        =

                   = 2

                   -

        =

                   =

                   =

                    = 

                   =

                   Choice (A)

106.           If I = -

        Ans :  I =

                   Put 1 + x3 = t Þ x2 dx =

                   \ I =

                   =

                   =

                   =

                   Choice (D)

107.           Area enclosed by the curve -

        Ans :

                   Þ  = 1

                   \ Area of ellipse = p ab

                   = p ´

                   = 4

                   Choice (D)

108.The value of -

        Ans :

                   x = a sin2 q

                   dx = 2a sin q cos q dq

                   x = 0 ® q = 0

                   x = a ® q =

                  

                       =

                   = 2a ´

                   Choice (C)

109.           Let y be the number of people -

        Ans : 

                  

                   l n y = - kt + c

                   y = ce- kt,  c > 0

                                    k ³ 0

                                Choice (B)

110.        The differential equation of -

         Ans:  x cos q + y sin q = a ¾ (1)

                differentiating cos q + y’ sin q = 0 ¾ (2)

                Eliminating sin q and cos q from (1) and (2)

                cos q =

                sin q =

                sin 2 q + cos2 q = 1

                Þ

                Þ a2y’ + a2 = (xy’ - g)2

                Þ

                Choice (B)

111.           The differential equation
        admits
-

        Ans:  

                   , |y| > 0 , 3 > 0

     Three positive quantities cannot add to give zero.

   \ No solution.

                   Choice (B)

112.           Solution of the differential equation xdy -

        Ans : ¾ (1)

                   which is homogeneous put y = vx

                   \

                   \ (1) Þ

                   \ x

                   \

                   Integrating

                  

                   log

                   log

                  

                   \ y +

                   Choice (B)

113.           Let P, Q, R and S be statements and suppose-

        Ans:   p ® G ® R R ® p and ~ S ® R

                   Þ (C) and (D) are not true also ~ S ® R .

                   \ (A) is not true

                   Choice (B)

114. In how many number of ways -

        Ans  :   Required number of ways =

                                     = 2100

                     Choice (D)

115.        If R be a relation defined -

        Ans :       Relation is symmetric and transitive

                        Choice (D)

116.        Let S be a finite set containing n elements.
Then
-

        Ans:        For commutative binary operations, there are  pairs available. For each of there pairs the result of the Binary operation should be among the n elements of S.

 
 


                \ Total number of required operations

                        =

                        =

                Choice (B)

117.           A manufacturer of cotter pins knows that-

Ans:   Probability of a cotter pin to be defective
 =

      Average number of defective cotter pins in a box of 100 is = 100 ´

                                   = 5

      We use Poisson distribution with parameter m = 5

      Choice (B)

       

118.           The probability that a certain kind -

        Ans : p = , q = , n = 4

                   P(X = x) =

                   \ p(X = 2) =

                         =

                   Choice (D)

119.           Mean and standard deviation -

        Ans : For best performance &  is less

                   Which true for  = 75, s = 5

                   Choice (B)

120.           A random variable X follows -

        Ans : For Binomial distribution

   0 < variance < mean

                   0 < b < a

                   Choice (B)

 

VITEEE 2009 Sample Question Papers - Physics
PART – 1 [PHYSICS]   1.     In nature, the electric charge of any system is always–

VITEEE 2009 Sample Question Papers - Chemistry
41.  The oxidation number of oxygen ¾         

VITEEE 2009 Sample Question Papers - Mathematics
VITEEE 2009 Sample Question Papers - Chemistry -  PART – 3 [MATHEMATICS] 81.  The system of equations -


VITEEE Information
VIT consists of four parts:

VITEEE Past Trends, Cut-offs & Marks Distribution
This is an  objective type test and consists of  four parts- Part I -Physics - 40 marks Part II - Chemistry - 40 marks Part III - Mathematics –40 marks Part IV...

Detailed Information - Vellore Institute Of Technology (VIT) This article is for all those people who have agood rank in aieee and also a good stream in vit. After seeing a no of aspirants in this forum looking for advice i try to spread a

 

Source:-http://www.time4education.com


Related Guides

  1. PTU CET 2010 Punjab Technical University Combined Entrance Test 2010
  2. DA-IICT Btech (ICT) Admissions Deadline on 5th March, 2010
  3. MHT-CET-2010 on Thursday, 6th May, 2010
  4. SRMEEE 2010 on 2nd May, 2010 - SRM Engineering Entrance Examination
  5. Manipal University Admissions 2010
  6. VITEEE - 2010 Exam on April 17, 2010
  7. Karnataka CET 2009 Results, Architecture Rank list and Answer Keys
  8. Punjab Engineering College (PEC) 2009 expected Cutoff and admission notification
  9. Karnataka CET Expected Cutoff, Answer Key, Ranking and Colleges under CET 2009
  10. VITEEE 2009 Sample Question Papers - Chemistry
  11. VITEEE 2009 Sample Question Papers - Physics
  12. EAMCET 2009 Offline Application Details, Eligibility Criteria, Qualifying Marks, Syllabus and Subject Wise Weightage
  13. NATA, CEED, NIFT, NID AND AIEEE 2009
  14. Karnataka CET - Admission, Time Table, Breakup, Fee Structure
  15. Kaanataka CET Previous Year Question Papers
  16. VIT 2009 [NRI]: Admission to B.TECH. DEGREE PROGRAMMES for NRI / FOREIGN CATEGORY is open for the year 2009-2010
  17. WBJEE 2009 on April 19 2009 - No upper age limit for WBJEE exam
  18. The Karnataka Common Entrance Test (KCET) Information and Previous Year Questions - 2004 to 2008
  19. EAMCET Question Paper (Physics)
  20. DCE (Delhi College of Engineering) Entrance Examination Sample Paper - Maths
  21. DCE (Delhi College of Engineering) Entrance Examination Sample Paper - Chemistry
  22. DCE (Delhi College of Engineering) Entrance Examination Sample Paper - Physics
  23. Top 50 private Engineering Colleges
  24. AMRITHA VISWAVIDYA PEETHAM University - Deatiled Information
  25. Counseling : FAQ’s about NSIT/DCE
  26. DCE 2008 Exam: What to do at last stage?